CAN-Trace Attack: Exploit CAN Messages to Uncover Driving Trajectories

Publisher:
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Publication Type:
Journal Article
Citation:
IEEE Transactions on Intelligent Transportation Systems, 2025, PP, (99)
Issue Date:
2025-01-01
Full metadata record
Driving trajectory data remains vulnerable to privacy breaches despite existing mitigation measures. Traditional methods for detecting driving trajectories typically rely on map-matching the path using Global Positioning System (GPS) data, which is susceptible to GPS data outage. This paper introduces CAN-Trace, a novel privacy attack mechanism that leverages Controller Area Network (CAN) messages to uncover driving trajectories, posing a significant risk to drivers' long-term privacy. A new trajectory reconstruction algorithm is proposed to transform the CAN messages, specifically vehicle speed and accelerator pedal position, into weighted graphs accommodating various driving statuses. CAN-Trace identifies driving trajectories using graph-matching algorithms applied to the created graphs in comparison to road networks. We also design a new metric to evaluate matched candidates, which allows for potential data gaps and matching inaccuracies. Empirical validation under various real-world conditions, encompassing different vehicles and driving regions, demonstrates the efficacy of CAN-Trace: it achieves an attack success rate of up to 90.59% in the urban region, and 99.41% in the suburban region.
Please use this identifier to cite or link to this item: