Mining frequent itemsets for protein kinase regulation

Publication Type:
Conference Proceeding
PRICAI 2006: Trends in Artificial Intelligence, 2006, pp. 222 - 230
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2006005159.pdf675.02 kB
Adobe PDF
Protein kinases, a family of enzymes, have been viewed as an important signaling intermediary by living organisms for regulating critical biological processes such as memory, hormone response and cell growth. The unbalanced kinases are known to cause cancer and other diseases. With the increasing efforts to collect, store and disseminate information about the entire kinase family, it not only leads to valuable data set to understand cell regulation but also poses a big challenge to extract valuable knowledge about metabolic pathway from the data. Data mining techniques that have been widely used to find frequent patterns in large datasets can be extended and adapted to kinase data as well. This paper proposes a framework for mining frequent itemsets from the collected kinase dataset. An experiment using AMPK regulation data demonstrates that our approaches are useful and efficient in analyzing kinase regulation data.
Please use this identifier to cite or link to this item: