Gait episode identification based on wavelet feature clustering of spectrogram images

Publisher:
IEEE
Publication Type:
Conference Proceeding
Citation:
Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012, pp. 2949 - 2952
Issue Date:
2012-01
Filename Description Size
Thumbnail2011007614OK.pdf1.95 MB
Adobe PDF
Full metadata record
Automatic analysis of gait using kinematic sensors is a newly emerging area of research. We describe a new way to detect walking, and measure gait cadence, by using time-frequency signal processing together with spectrogram analysis of signals from a chest-worn inertial measurement unit (IMU). A pilot study of 11 participants suggests that this method is able to distinguish between walk and non-walk activities with up to 88.70% sensitivity and 97.70% specificity. Limitations of the method include instability associated with manual fine-tuning of local and global threshold levels.
Please use this identifier to cite or link to this item: