Assessing the major factors affecting the performances of forward osmosis and its implications on the desalination process

Publication Type:
Journal Article
Citation:
Chemical Engineering Journal, 2013, 231 pp. 484 - 496
Issue Date:
2013-09-01
Filename Description Size
Thumbnail2012007132OK.pdf1.55 MB
Adobe PDF
Full metadata record
This study evaluates the influence of some of the major factors affecting the performances of forward osmosis (FO) desalination and assessed their potential implications on the overall process. The major factors assessed include membrane properties, draw solution (DS) properties, feed solution (FS) properties and the operating conditions. The influence of the membrane properties was evaluated using three types of membranes and in doing so we have also introduced one newly synthesized proprietary thin film composite FO (TFC-FO) membrane. The performances of TFC-FO membrane in terms of water flux and reverse solute flux were significantly higher than the commercial cellulose triacetate FO membrane and TFC reverse osmosis membrane in FO process. Although adequate osmotic pressure of DS is desirable for FO process, the influence of DS osmotic pressure was less significant at higher DS osmotic pressure and therefore selecting an optimum initial osmotic pressure is essential for FO process to minimize pumping energy. A critical DS concentration has been hypothesized to minimize the implications of DS concentrations on the capital and operational cost of the FO desalination plant. Total dissolved solids (TDS) of the FS play a significant role in the performance of FO process however the influence of feed TDS was less significant for feed higher than 20,000. mg/L indicating that FO has a promising potential for use with high TDS feed water. Although, water flux decreased, the reverse solute flux (RSF) and specific RSF also decreased slightly at higher feed TDS. For operating parameters, the influence of crossflow velocity and the crossflow direction was also investigated. © 2013 Elsevier B.V.
Please use this identifier to cite or link to this item: