Fast Maximal Cliques Enumeration in Sparse Graphs

Publisher:
Springer Science+Business Media
Publication Type:
Journal Article
Citation:
Algorithmica, 2013, 66 (1), pp. 173 - 186
Issue Date:
2013-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2013002445OK.pdf501.29 kB
Adobe PDF
In this paper, we consider the problem of generating all maximal cliques in a sparse graph in polynomial delay. Given a graph G=(V,E) with n vertices and m edges, the latest and fastest polynomial delay algorithm for sparse graphs enumerates all maximal cliques in O(? 4) time delay, where ? is the maximum degree of vertices. However, it requires an O(n·m) preprocessing time. We improve it in two aspects. First, our algorithm does not need preprocessing. Therefore, our algorithm is a truly polynomial delay algorithm. Second, our algorithm enumerates all maximal cliques in O(?·H 3) time delay, where H is the so called H-value of a graph or equivalently it is the smallest integer satisfying |{v?V|d(v)=H}|=H given d(v) as the degree of a vertex. In real-world network data, H usually is a small value and much smaller than delta
Please use this identifier to cite or link to this item: