A Proficient and Dynamic Bidding Agent for Online Auctions

Publication Type:
Conference Proceeding
Lecture Notes in Computer Science, 2013, 7607 (1), pp. 178 - 190
Issue Date:
Full metadata record
E-consumers face biggest challenge of opting for the best bidding strategies for competing in an environment of multiple and simultaneous online auctions for same or similar items. It becomes very complicated for the bidders to make decisions of selecting which auction to participate in, place single or multiple bids, early or late bidding and how much to bid. In this paper, we present the design of an autonomous dynamic bidding agent (ADBA) that makes these decisions on behalf of the buyers according to their bidding behaviors. The agent develops a comprehensive method for initial price prediction and an integrated model for bid forecasting. The initial price prediction method selects an auction to participate in and then predicts its closing price (initial price). Then the bid forecasting model forecasts the bid amount by designing different bidding strategies followed by the late bidders. The experimental results demonstrated improved initial price prediction outcomes by proposing a clustering based approach. Also, the results show the proficiency of the bidding strategies amongst the late bidders with desire for bargain
Please use this identifier to cite or link to this item: