I/O Efficient: Computing SCCs in Massive Graphs

Publisher:
ACM
Publication Type:
Conference Proceeding
Citation:
Proceedings of ACM Conference on Management of Data, 2013, pp. 181 - 192
Issue Date:
2013-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2013002433OK.pdf582.12 kB
Adobe PDF
A strongly connected component (SCC) is a maximal subgraph of a directed graph G in which every pair of nodes are reachable from each other in the SCC. With such a property, a general directed graph can be represented by a directed acyclic graph DAG by contracting an SCC of G to a node in DAG. In many real applications that need graph pattern matching, topological sorting, or reachability query processing, the best way to deal with a general directed graph is to deal with its DAG representation. Therefore, finding all SCCs in a directed graph G is a critical operation. The existing in-memory algorithms based on depth first search (DFS) can find all SCCs in linear time w.r.t. the size of a graph. However, when a graph cannot resident entirely in the main memory, the existing external or semi-external algorithms to find all SCCs have limitation to achieve high I/O efficiency. In this paper, we study new I/O efficient semi-external algorithms to find all SCCs for a massive directed graph G that cannot reside in main memory entirely. To overcome the deficiency of the existing DFS based semi-external algorithm that heavily relies on a total order, we explore a weak order based on which we investigate new algorithms. We propose a new two phase algorithm, namely, tree construction and tree search. In the tree construction phase, a spanning tree of G can be constructed in bounded sequential scans of G. In the tree search phase, it needs to sequentially scan the graph once to find all SCCs.
Please use this identifier to cite or link to this item: