An efficient approach to the simultaneous localisation and mapping problem
- Publication Type:
- Conference Proceeding
- Citation:
- Proceedings - IEEE International Conference on Robotics and Automation, 2002, 1 pp. 406 - 411
- Issue Date:
- 2002-01-01
Closed Access
Filename | Description | Size | |||
---|---|---|---|---|---|
![]() | 2004003404.pdf | 754.14 kB |
Copyright Clearance Process
- Recently Added
- In Progress
- Closed Access
This item is closed access and not available.
This paper presents a novel approach to the Simultaneous Localisation and Mapping (SLAM) algorithm that exploits the manner in which observations are fused into the global map of the environment to manage the computational complexity of the algorithm and improve the data association process. Rather than incorporating every observation directly into the global map of the environment, the Constrained Local Submap Filter (CLSF) relies on creating an independent, local submap of the features in the immediate vicinity of the vehicle. This local submap is then periodically fused into the global map of the environment using appropriately formulated constraints between the common feature estimates. This approach is shown to be effective in reducing the computational complexity of maintaining the global map estimates as well as improving the data association process.
Please use this identifier to cite or link to this item: