Orthogonal Nonnegative Locally Linear Embedding

Publication Type:
Conference Proceeding
2013 IEEE International Conference on Systems, Man, and Cybernetics, 2013, pp. 2134 - 2139
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2013003401OK.pdf818.1 kB
Adobe PDF
Nonnegative matrix factorization (NMF) decomposes a nonnegative dataset X into two low-rank nonnegative factor matrices, i.e., W and H, by minimizing either Kullback-Leibler (KL) divergence or Euclidean distance between X and WH. NMF has been widely used in pattern recognition, data mining and computer vision because the non-negativity constraints on both W and H usually yield intuitive parts-based representation. However, NMF suffers from two problems: 1) it ignores geometric structure of dataset, and 2) it does not explicitly guarantee parts-based representation on any datasets. In this paper, we propose an orthogonal nonnegative locally linear embedding (ONLLE) method to overcome aforementioned problems. ONLLE assumes that each example embeds in its nearest neighbors and keeps such relationship in the learned subspace to preserve geometric structure of a dataset. For the purpose of learning parts-based representation, ONLLE explicitly incorporates an orthogonality constraint on the learned basis to keep its spatial locality. To optimize ONLLE, we applied an efficient fast gradient descent (FGD) method on Stiefel manifold which accelerates the popular multiplicative update rule (MUR). The experimental results on real-world datasets show that FGD converges much faster than MUR. To evaluate the effectiveness of ONLLE, we conduct both face recognition and image clustering on real-world datasets by comparing with the representative NMF methods.
Please use this identifier to cite or link to this item: