Visual reranking through weakly supervised multi-graph learning

Publication Type:
Conference Proceeding
Citation:
Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 2600 - 2607
Issue Date:
2013-01-01
Filename Description Size
2013003258OK_Deng.pdf1.17 MB
Adobe PDF
Full metadata record
Visual reranking has been widely deployed to refine the quality of conventional content-based image retrieval engines. The current trend lies in employing a crowd of retrieved results stemming from multiple feature modalities to boost the overall performance of visual reranking. However, a major challenge pertaining to current reranking methods is how to take full advantage of the complementary property of distinct feature modalities. Given a query image and one feature modality, a regular visual reranking framework treats the top-ranked images as pseudo positive instances which are inevitably noisy, difficult to reveal this complementary property, and thus lead to inferior ranking performance. This paper proposes a novel image reranking approach by introducing a Co-Regularized Multi-Graph Learning (Co-RMGL) framework, in which the intra-graph and inter-graph constraints are simultaneously imposed to encode affinities in a single graph and consistency across different graphs. Moreover, weakly supervised learning driven by image attributes is performed to denoise the pseudo-labeled instances, thereby highlighting the unique strength of individual feature modality. Meanwhile, such learning can yield a few anchors in graphs that vitally enable the alignment and fusion of multiple graphs. As a result, an edge weight matrix learned from the fused graph automatically gives the ordering to the initially retrieved results. We evaluate our approach on four benchmark image retrieval datasets, demonstrating a significant performance gain over the state-of-the-arts. © 2013 IEEE.
Please use this identifier to cite or link to this item: