Power allocation for Gaussian Mixture model prior knowledge in wirless sensor networks

Publisher:
IEEE
Publication Type:
Conference Proceeding
Citation:
2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, pp. 5765 - 5769
Issue Date:
2013-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2013004173OK.pdf171.99 kB
Adobe PDF
This paper presents power allocation in nonlinear sensor networks for Gaussian Mixture (GM) information source. The observations of sensors are transmitted through independent Rayleigh flat fading channels to a fusion centre (FC). Transmit Power is optimally allocated to sensor nodes so as to minimize the mean square error (MSE) of estimate at FC. Bayesian linear and optimal nonlinear estimators are deployed at FC to compare the proposed optimal and uniform power allocation among sensors. Extensive simulations validate that the proposed Bayesian linear estimator with optimized power gains effectively works for GM prior distribution
Please use this identifier to cite or link to this item: