Personalized influence maximization on social networks

Publisher:
ACM
Publication Type:
Conference Proceeding
Citation:
Proceedings of the 22nd ACM international conference on Conference on information & knowledge management, 2013, pp. 199 - 208
Issue Date:
2013-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2013005154OK.pdf726.37 kB
Adobe PDF
In this paper, we study a new problem on social network influence maximization. The problem is defined as, given a target user $w$, finding the top-k most influential nodes for the user. Different from existing influence maximization works which aim to find a small subset of nodes to maximize the spread of influence over the entire network (i.e., global optima), our problem aims to find a small subset of nodes which can maximize the influence spread to a given target user (i.e., local optima). The solution is critical for personalized services on social networks, where fully understanding of each specific user is essential. Although some global influence maximization models can be narrowed down as the solution, these methods often bias to the target node itself. To this end, in this paper we present a local influence maximization solution. We first provide a random function, with low variance guarantee, to randomly simulate the objective function of local influence maximization. Then, we present efficient algorithms with approximation guarantee. For online social network applications, we also present a scalable approximate algorithm by exploring the local cascade structure of the target user. We test the proposed algorithms on several real-world social networks. Experimental results validate the performance of the proposed algorithms.
Please use this identifier to cite or link to this item: