Efficient rank based KNN query processing over uncertain data

Publication Type:
Conference Proceeding
Proceedings - International Conference on Data Engineering, 2010, pp. 28 - 39
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2013005467OK.pdf337.16 kB
Adobe PDF
Uncertain data are inherent in many applications such as environmental surveillance and quantitative economics research. As an important problem in many applications, KNN query has been extensively investigated in the literature. In this paper, we study the problem of processing rank based KNN query against uncertain data. Besides applying the expected rank semantic to compute KNN, we also introduce the median rank which is less sensitive to the outliers. We show both ranking methods satisfy nice top-k properties such as exact-k, containment, unique ranking, value invariance, stability and fairfulness. For given query q, IO and CPU efficient algorithms are proposed in the paper to compute KNN based on expected (median) ranks of the uncertain objects. To tackle the correlations of the uncertain objects and high IO cost caused by large number of instances of the uncertain objects, randomized algorithms are proposed to approximately compute KNN with theoretical guarantees. Comprehensive experiments are conducted on both real and synthetic data to demonstrate the efficiency of our techniques. © 2010 IEEE.
Please use this identifier to cite or link to this item: