Framing tangible interaction frameworks

Publisher:
Cambridge University Press
Publication Type:
Journal Article
Citation:
Artificial Intelligence For Engineering Design, Analysis And Manufacturing, 2009, 23 (3), pp. 225 - 235
Issue Date:
2009-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2012000078OK.pdf310.87 kB
Adobe PDF
Tangible interaction is a growing area of human-computer interaction research that has become popular in recent years. Yet designers and researchers are still trying to comprehend and clarify its nature, characteristics, and implications. One approach has been to create frameworks that help us look back at and categorize past tangible interaction systems, and look forward at the possibilities and opportunities for developing new systems. To date, a number of different frameworks have been proposed that each provide different perspectives on the tangible interaction design space, and which can guide designers of new systems in different ways. In this paper, we map the space of tangible interaction frameworks.We order existing frameworks by their general type, and by the facets of tangible interaction design they address. One of our main conclusions is that most frameworks focus predominantly on the conceptual design of tangible systems, whereas fewer frameworks abstract the knowledge gained from previous systems, and hardly any framework provides concrete steps or tools for building new tangible systems. In addition, the facets most represented in existing frameworks are those that address the interactions with or the physicality of the designed systems. Other facets, such as domain-specific technology and experience, are rare. This focus on design, interaction, and physicality is interesting, as the origins of the field are rooted in engineering methods and have only recently started to incorporate more design-inspired approaches. As such, we expected more frameworks to focus on technologies and to provide concrete building suggestions for new tangible interaction systems.
Please use this identifier to cite or link to this item: