Handling Ambiguity via Input-Output Kernel Learning

Publisher:
IEEE
Publication Type:
Conference Proceeding
Citation:
2012 IEEE 12th International Conference on Data Mining (ICDM), 2012, pp. 725 - 734
Issue Date:
2012-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2013004326OK.pdf469.87 kB
Adobe PDF
Data ambiguities exist in many data mining and machine learning applications such as text categorization and image retrieval. For instance, it is generally beneficial to utilize the ambiguous unlabeled documents to learn a more robust classifier for text categorization under the semi-supervised learning setting. To handle general data ambiguities, we present a unified kernel learning framework named Input-Output Kernel Learning (IOKL). Based on our framework, we further propose a novel soft margin group sparse Multiple Kernel Learning (MKL) formulation by introducing a group kernel slack variable to each group of base input-output kernels. Moreover, an efficient block-wise coordinate descent algorithm with an analytical solution for the kernel combination coefficients is developed to solve the proposed formulation. We conduct comprehensive experiments on benchmark datasets for both semi-supervised learning and multiple instance learning tasks, and also apply our IOKL framework to a computer vision application called text-based image retrieval on the NUS-WIDE dataset. Promising results demonstrate the effectiveness of our proposed IOKL framework.
Please use this identifier to cite or link to this item: