Simulated annealing based approach for near-optimal sensor selection in Gaussian Processes

Publication Type:
Conference Proceeding
2012 International Conference on Control, Automation and Information Sciences, ICCAIS 2012, 2012, pp. 142 - 147
Issue Date:
Filename Description Size
Thumbnail2012000640OK.pdf1.43 MB
Adobe PDF
Full metadata record
This paper addresses the sensor selection problem associated with monitoring spatial phenomena, where a subset of k sensor measurements from among a set of n potential sensor measurements is to be chosen such that the root mean square prediction error is minimised. It is proposed that the spatial phenomena to be monitored is modelled using a Gaussian Process and a simulated annealing based approximately heuristic algorithm is used to solve the resulting minimisation problem. The algorithm is shown to be computationally efficient and is illustrated using both indoor and outdoor environment monitoring scenarios. It is shown that, although the proposed algorithm is not guaranteed to find the optimum, it always provides accurate solutions for broad range real-world and computer generated datasets. © 2012 IEEE.
Please use this identifier to cite or link to this item: