Classifier and cluster ensembles for mining concept drifting data streams
- Publication Type:
- Conference Proceeding
- Citation:
- Proceedings - IEEE International Conference on Data Mining, ICDM, 2010, pp. 1175 - 1180
- Issue Date:
- 2010-12-01
Closed Access
Filename | Description | Size | |||
---|---|---|---|---|---|
2012001869OK.pdf | Published version | 340.03 kB |
Copyright Clearance Process
- Recently Added
- In Progress
- Closed Access
This item is closed access and not available.
Ensemble learning is a commonly used tool for building prediction models from data streams, due to its intrinsic merits of handling large volumes stream data. Despite of its extraordinary successes in stream data mining, existing ensemble models, in stream data environments, mainly fall into the ensemble classifiers category, without realizing that building classifiers requires labor intensive labeling process, and it is often the case that we may have a small number of labeled samples to train a few classifiers, but a large number of unlabeled samples are available to build clusters from data streams. Accordingly, in this paper, we propose a new ensemble model which combines both classifiers and clusters together for mining data streams. We argue that the main challenges of this new ensemble model include (1) clusters formulated from data streams only carry cluster IDs, with no genuine class label information, and (2) concept drifting underlying data streams makes it even harder to combine clusters and classifiers into one ensemble framework. To handle challenge (1), we present a label propagation method to infer each cluster's class label by making full use of both class label information from classifiers, and internal structure information from clusters. To handle challenge (2), we present a new weighting schema to weight all base models according to their consistencies with the up-to-date base model. As a result, all classifiers and clusters can be combined together, through a weighted average mechanism, for prediction. Experiments on real-world data streams demonstrate that our method outperforms simple classifier ensemble and cluster ensemble for stream data mining. © 2010 IEEE.
Please use this identifier to cite or link to this item: