Differential regulation of CCL-11/eotaxin-1 and CXCL-8/IL-8 by Gram-positive and Gram-negative bacteria in human airway smooth muscle cells

Publication Type:
Journal Article
Respiratory Research, 2008, 9
Issue Date:
Full metadata record
Background: Bacterial infections are a cause of exacerbation of airway disease. Airway smooth muscle cells (ASMC) are a source of inflammatory cytokines/chemokines that may propagate local airway inflammatory responses. We hypothesize that bacteria and bacterial products could induce cytokine/chemokine release from ASMC.Methods: Human ASMC were grown in culture and treated with whole bacteria or pathogen associated molecular patterns (PAMPs) for 24 or 48 h. The release of eotaxin-1, CXCL-8 or GMCSF was measured by ELISA.Results: Gram-negative E. coli or Gram-positive S. aureus increased the release of CXCL-8, as did IL-1β, LPS, FSL-1 and Pam3CSK4, whereas FK565, MODLys18 or Poly I:C did not. E. coli inhibited eotaxin-1 release under control conditions and after stimulation with IL-1β. S. aureus tended to inhibit eotaxin-1 release stimulated with IL-1β. E. coli or LPS, but not S. aureus, induced the release of GMCSF.Conclusion: Gram-positive or Gram-negative bacteria activate human ASMC to release CXCL-8. By contrast Gram-negative bacteria inhibited the release of eotaxin-1 from human ASMCs. E. coli, but not S. aureus induced GMCSF release from cells.Our findings that ASMC can respond directly to Gram-negative and Gram-positive bacteria by releasing the neutrophil selective chemokine, CXCL-8, is consistent with what we know about the role of neutrophil recruitment in bacterial infections in the lung. Our findings that bacteria inhibit the release of the eosinophil selective chemokine, eotaxin-1 may help to explain the mechanisms by which bacterial immunotherapy reduces allergic inflammation in the lung. © 2008 Issa et al; licensee BioMed Central Ltd.
Please use this identifier to cite or link to this item: