The model of chaotic sequences based on adaptive particle swarm optimization arithmetic combined with seasonal term

Publication Type:
Journal Article
Citation:
Applied Mathematical Modelling, 2012, 36 (3), pp. 1184 - 1196
Issue Date:
2012-03-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2011005557OK.pdfPublished Version1.04 MB
Adobe PDF
Within a competitive electric power market, electricity price is one of the core elements, which is crucial to all the market participants. Accurately forecasting of electricity price becomes highly desirable. This paper propose a forecasting model of electricity price using chaotic sequences for forecasting of short term electricity price in the Australian power market. One modified model is applies seasonal adjustment and another modified model is employed seasonal adjustment and adaptive particle swarm optimization (APSO) that determines the parameters for the chaotic system. The experimental results show that the proposed methods performs noticeably better than the traditional chaotic algorithm. © 2011 Elsevier Inc.
Please use this identifier to cite or link to this item: