Visual analytics of clinical and genetic datasets of acute lymphoblastic leukaemia

Publication Type:
Conference Proceeding
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2011, 7062 LNCS (PART 1), pp. 113 - 120
Issue Date:
Filename Description Size
Thumbnail2011001178OK.pdf Published version12.07 MB
Adobe PDF
Full metadata record
This paper presents a novel visual analytics method that incorporates knowledge from the analysis domain so that it can extract knowledge from complex genetic and clinical data and then visualizing them in a meaningful and interpretable way. The domain experts that are both contributors to formulating the requirements for the design of the system and the actual user of the system include microbiologists, biostatisticians, clinicians and computational biologists. A comprehensive prototype has been developed to support the visual analytics process. The system consists of multiple components enabling the complete analysis process, including data mining, interactive visualization, analytical views, gene comparison. A visual highlighting method is also implemented to support the decision making process. The paper demonstrates its effectiveness on a case study of childhood cancer patients. © 2011 Springer-Verlag.
Please use this identifier to cite or link to this item: