Robust People Tracking and SHMM learning using SHMMs

Publisher:
Australian Robotics and Automation Association Inc.
Publication Type:
Conference Proceeding
Citation:
Proceedings of the Australasian Conference on Robotics and Automation 2011 (ACRA 2011), 2011, pp. 1 - 6
Issue Date:
2011-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2010006654OK.pdf Published version3.45 MB
Adobe PDF
For effective Human Robot Interaction (HRI), it is necessary for the robot to be aware of its human peers and be able to anticipate and predict their actions. This paper explores an improved strategy for people tracking using Sampled Hidden Markov Models (SHMM) for capturing common human motion patterns. Such an SHMM contains rich information about human spatial behavior and it can be learned on-line during robot operation. The proposed integration of people tracking and learning offers significant improvements to the outcomes when compared to existing techniques. Real world experiments that demonstrate the viability and effectiveness of the approach are presented.
Please use this identifier to cite or link to this item: