Answer set programming for computing decisions under uncertainty
- Publication Type:
- Conference Proceeding
- Citation:
- Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2011, 6717 LNAI pp. 485 - 496
- Issue Date:
- 2011-07-14
Closed Access
Filename | Description | Size | |||
---|---|---|---|---|---|
2013007813OK.pdf | Published version | 362.24 kB |
Copyright Clearance Process
- Recently Added
- In Progress
- Closed Access
This item is closed access and not available.
Possibility theory offers a qualitative framework for modeling decision under uncertainty. In this setting, pessimistic and optimistic decision criteria have been formally justified. The computation by means of possibilistic logic inference of optimal decisions according to such criteria has been proposed. This paper presents an Answer Set Programming (ASP)-based methodology for modeling decision problems and computing optimal decisions in the sense of the possibilistic criteria. This is achieved by applying both a classic and a possibilistic ASP-based methodology in order to handle both a knowledge base pervaded with uncertainty and a prioritized preference base. © 2011 Springer-Verlag Berlin Heidelberg.
Please use this identifier to cite or link to this item: