New submerged membrane bioreactors (SMBRs) for sustainable water

Publisher:
IK International Publishing House Pvt. Ltd.
Publication Type:
Chapter
Citation:
Advances in Industrial Biotechnology, 2014, pp. 393 - 411
Issue Date:
2014-01
Filename Description Size
Industrial Biotechnology (Chapter 21).pdf Published version4.55 MB
Adobe PDF
Full metadata record
To ensure a stable and reliable operation of MBR in wastewater treatment, it is vital important to exploit and develop novel advanced system configurations as well as low cost and environmental friendly materials in controlling membrane fouling and reducing contaminant loading. The enhanced system performance, extended service life of membrane, and reduced operational cost can significantly contribute to long-term sustainable development in water resources. Compared with conventional SMBR approach, the modified SMBR systems, including ASMBR, SSMBR, integrated SMBR and GACS-FBBR, achieved more desirable outcomes in organic and nutrient removal and exhibited lower TMP development. While PAC in ASMBR can increase the organic removal, mitigate membrane fouling and enhance permeate flux by simultaneous functions of adsorption and biodegradation on its surface, the porous media (e.g., sponge and NB) addition to SMBR can be an excellent solution for additional nutrient removal improvement. It is worth noting that GBF can also play important roles for enhancing microbial activity and minimizing membrane fouling. Furthermore, both the laboratory and pilot scale studies on GACS-FBBR confi rmed that this hybrid system can be a promising pre-treatment for MBR, owing to its success in treating organics and nutrients along with the membrane fouling control.
Please use this identifier to cite or link to this item: