Comparison of two strategies of path planning for underwater robot navigation under uncertainty

Publication Type:
Conference Proceeding
2014 13th International Conference on Control Automation Robotics and Vision, ICARCV 2014, 2014, pp. 901 - 906
Issue Date:
Filename Description Size
ThumbnailP0470.pdf Published version666.44 kB
Adobe PDF
Full metadata record
© 2014 IEEE. This paper considers path planning for underwater robot in navigation tasks. The main challenge is how to deal with uncertainties in the underwater environment such as motion model error and sensing error. To overcome this challenge, two high level control methods have been presented and compared, which are based on the Model Predictive Control (MPC) strategy and the Partially Observable Markov Decision Process (POMDP) model, respectively. Navigation time, collision frequency, energy consumption and accuracy in localization are used as the assessment criteria for the two methods. It is shown that the MPC-based method is more efficient for our application scenarios while the POMDP-based method can provide more robust solutions.
Please use this identifier to cite or link to this item: