Spectral salient object detection

Publication Type:
Conference Proceeding
Proceedings - IEEE International Conference on Multimedia and Expo, 2014, 2014-September (Septmber)
Issue Date:
Full metadata record
© 2014 IEEE. Many existing methods for salient object detection are performed by over-segmenting images into non-overlapping regions, which facilitate local/global color statistics for saliency computation. In this paper, we propose a new approach: spectral salient object detection, which is benefited from selected attributes of normalized cut, enabling better retaining of holistic salient objects as comparing to conventionally employed pre-segmentation techniques. The proposed saliency detection method recursively bi-partitions regions that render the lowest cut cost in each iteration, resulting in binary spanning tree structure. Each segmented region is then evaluated under criterion that fit Gestalt laws and statistical prior. Final result is obtained by integrating multiple intermediate saliency maps. Experimental results on three benchmark datasets demonstrate the effectiveness of the proposed method against 13 state-of-the-art approaches to salient object detection.
Please use this identifier to cite or link to this item: