Macroscopic Indeterminacy Swarm Optimization (MISO) algorithm for real-parameter search

Publication Type:
Conference Proceeding
Citation:
Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014, 2014, pp. 1571 - 1578
Issue Date:
2014-01-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail06900281.pdf Published version1.71 MB
Adobe PDF
© 2014 IEEE. Swarm Intelligence (SI) is a nature-inspired emergent artificial intelligence. They are often inspired by the phenomena in nature. Many proposed algorithms are focused on designing new update mechanisms with formulae and equations to emerge new solutions. Despite the techniques used in an algorithm being the key factor of the whole system, the evaluation of candidate solutions also plays an important role. In this paper, the proposed algorithm Macroscopic Indeterminacy Swarm Optimization (MISO) presents a new search scheme with indeterminate moment of evaluation. Here, we perform an experiment based on public benchmark functions. The results produced by MISO, Differential Evolution (DE) with various settings, Artificial Bee Colony (ABC), Simplified Swarm Optimization (SSO), and Particle Swarm Optimization (PSO) have been compared. The result shows MISO can achieve similar or even better performance than other algorithms.
Please use this identifier to cite or link to this item: