BigData visualization: Parallel coordinates using density approach

Publisher:
Institute of Electrical and Electronics Engineers Inc.
Publication Type:
Conference Proceeding
Citation:
2014 2nd International Conference on Systems and Informatics, ICSAI 2014, 2014, pp. 1056 - 1063
Issue Date:
2014
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2014-ICSAI.pdf Published version1.85 MB
Adobe PDF
Information visualization is a very important tool in BigData analytics. BigData, structured and unstructured data which contains images, videos, texts, audio and other forms of data, collected from multiple datasets, is too big, too complex and moves too fast to analyse using traditional methods. This has given rise to two issues; 1) how to reduce multidimensional data without the loss of any data patterns for multiple datasets, 2) how to visualize BigData patterns for analysis. In this paper, we have classified the BigData attributes into '5Ws' data dimensions, and then established a '5Ws' density approach that represents the characteristics of data flow patterns. We use parallel coordinates to display the '5Ws' sending and receiving densities which provide more analytic features for BigData analysis. The experiment shows that this new model with parallel coordinate visualization can be efficiently used for BigData analysis and visualization.
Please use this identifier to cite or link to this item: