Investigation into on-road vehicle parameter identification based on subspace methods

Publication Type:
Journal Article
Citation:
Journal of Sound and Vibration, 2014, 333 (24), pp. 6760 - 6779
Issue Date:
2014-01-01
Full metadata record
Files in This Item:
Filename Description Size
investigation into on-road vehicle parameter.pdfPublished Version1.54 MB
Adobe PDF
© 2014 Elsevier Ltd. The randomness of road-tyre excitations can excite the low frequency ride vibrations of bounce, pitch and roll modes of an on-road vehicle. In this paper, modal parameters and mass moments of inertia of an on-road vehicle are estimated with an acceptable accuracy only by measuring accelerations of vehicle sprung mass and unsprung masses, which is based on subspace identification methods. The vehicle bounce, pitch and roll modes are characterized by their large damping (damping ratio 0.2-0.3). Two kinds of subspace identification methods, one that uses input/output data and the other that uses output data only, are compared for the highly damped modes. It is shown that, when the same data length is given, larger error of modal identification results can be clearly observed for the method using output data only; while additional use of input data will significantly reduce estimation variance. Instead of using tyre forces as inputs, which are difficult to be measured or estimated, vertical accelerations of unsprung masses are used as inputs. Theoretical analysis and Monte Carlo experiments show that, when the vehicle speed is not very high, subspace identification method using accelerations of unsprung masses as inputs can give more accurate results compared with the method using road-tyre forces as inputs. After the modal parameters are identified, and if vehicle mass and its center of gravity are pre-determined, roll and pitch moments of inertia of an on-road vehicle can be directly computed using the identified frequencies only, without requiring accurate estimation of mode shape vectors and multi-variable optimization algorithms.
Please use this identifier to cite or link to this item: