Tensor Canonical Correlation Analysis for Multi-View Dimension Reduction

Publication Type:
Journal Article
IEEE Transactions on Knowledge and Data Engineering, 2015, 27 (11), pp. 3111 - 3124
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail1502.02330v1.pdfSubmitted Version1.33 MB
Adobe PDF
© 2015 IEEE. Canonical correlation analysis (CCA) has proven an effective tool for two-view dimension reduction due to its profound theoretical foundation and success in practical applications. In respect of multi-view learning, however, it is limited by its capability of only handling data represented by two-view features, while in many real-world applications, the number of views is frequently many more. Although the ad hoc way of simultaneously exploring all possible pairs of features can numerically deal with multi-view data, it ignores the high order statistics (correlation information) which can only be discovered by simultaneously exploring all features. Therefore, in this work, we develop tensor CCA (TCCA) which straightforwardly yet naturally gene ralizes CCA to handle the data of an arbitrary number of views by analyzing the covariance tensor of the different views. TCCA aims to directly maximize the canonical correlation of multiple (more than two) views. Crucially, we prove that the main problem of multi-view canonical correlation maximization is equivalent to finding the best rank-1 approximation of the data covariance tensor, which can be solved efficiently using the well-known alternating least squares (ALS) algorithm. As a consequence, the high order correlation information contained in the different views is explored and thus a more reliable common subspace shared by all features can be obtained. In addition, a non-linear extension of TCCA is presented. Experiments on various challenge tasks, including large scale biometric structure prediction, internet advertisement classification, and web image annotation, demonstrate the effectiveness of the proposed method.
Please use this identifier to cite or link to this item: