K-Partite cliques of protein interactions: A novel subgraph topology for functional coherence analysis on PPI networks

Publication Type:
Journal Article
Journal of Theoretical Biology, 2014, 340 pp. 146 - 154
Issue Date:
Full metadata record
Many studies are aimed at identifying dense clusters/subgraphs from protein-protein interaction (PPI) networks for protein function prediction. However, the prediction performance based on the dense clusters is actually worse than a simple guilt-by-association method using neighbor counting ideas. This indicates that the local topological structures and properties of PPI networks are still open to new theoretical investigation and empirical exploration. We introduce a novel topological structure called k-partite cliques of protein interactions-a functionally coherent but not-necessarily dense subgraph topology in PPI networks-to study PPI networks. A k-partite protein clique is a maximal k-partite clique comprising two or more nonoverlapping protein subsets between any two of which full interactions are exhibited. In the detection of PPI's maximal k-partite cliques, we propose to transform PPI networks into induced K-partite graphs where edges exist only between the partites. Then, we present a maximal k-partite clique mining (MaCMik) algorithm to enumerate maximal k-partite cliques from K-partite graphs. Our MaCMik algorithm is then applied to a yeast PPI network. We observed interesting and unusually high functional coherence in k-partite protein cliques-the majority of the proteins in k-partite protein cliques, especially those in the same partites, share the same functions, although k-partite protein cliques are not restricted to be dense compared with dense subgraph patterns or (quasi-)cliques. The idea of k-partite protein cliques provides a novel approach of characterizing PPI networks, and so it will help function prediction for unknown proteins.© 2013 Elsevier Ltd.
Please use this identifier to cite or link to this item: