Development of a new poly silicate ferric coagulant and its application to coagulation-membrane filtration hybrid system in wastewater treatment

Taylor & Francis
Publication Type:
Journal Article
Desalination and Water Treatment, 2014, 52 (4-6), pp. 663 - 669
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2013003910 doc2.pdfAccepted Manuscript201.42 kB
Adobe PDF
Coagulation is one of the effective pretreatment stages in membrane filtration of wastewaters to produce clean water. Using a suitable coagulant, one can mitigate membrane fouling. Membrane fouling is a process where particles deposit onto a membrane surface or into membrane pores in a way that degrades the membrane’s performance. Research in this area is currently being focused on development of improved coagulation reagents such as poly silicate ferric (PSiFe), which has a high molecular weight and large number of positive surface charges with high efficiency at low doses. In this paper, PSiFe was prepared by following two approaches: (a) acidification of water glass solution using HCl followed by FeCl3 addition (old-PSiFe); (b) acidification of water glass solution by passing it through an acidic ion exchange resin followed by fresh FeCl3 addition under different Fe/Si molar ratios (new-PSiFe). These coagulants were characterised by X-ray diffraction and scanning electron microscopy. According to coagulation jar test results when Fe/Si = 1, the best performance was achieved in terms of turbidity, total organic carbon (TOC) and UV254 removals. Another aspect is the comparison of the old-PSiFe, FeCl3 and new-PSiFe which showed that in a membrane filtration system, using the new-PSiFe not only reduces the required transmembrane pressure (TMP) due to lower fouling, but also improves the TOC removal efficiency.
Please use this identifier to cite or link to this item: