An Intelligent Situation Awareness Support System for Safety-Critical Environments

Publisher:
Elsevier
Publication Type:
Journal Article
Citation:
Decision Support Systems, 2014, 59 pp. 325 - 340
Issue Date:
2014-01
Full metadata record
Files in This Item:
Filename Description Size
ThumbnailMohsen-DSS.pdfAccepted Manuscript Version1.22 MB
Adobe PDF
Operators handling abnormal situations in safety-critical environments need to be supported from a cognitive perspective to reduce their workload, stress, and consequent error rate. Of the various cognitive activities, a correct understanding of the situation, i.e. situation awareness (SA), is a crucial factor in improving performance and reducing error.However, existing systemsafety researches focus mainly on technical issues and often neglect SA. This study presents an innovative cognition-driven decision support system called the situation awareness support system (SASS) to manage abnormal situations in safety-critical environments in which the effect of situational complexity on human decision-makers is a concern. To achieve this objective, a situational network modeling process and a situation assessment model that exploits the specific capabilities of dynamic Bayesian networks and risk indicators are first proposed. The SASS is then developed and consists of fourmajor elements: 1) a situation data collection component that provides the current state of the observable variables based on online conditions and monitoring systems, 2) a situation assessment component based on dynamic Bayesian networks (DBN) to model the hazardous situations in a situational network and a fuzzy risk estimation method to generate the assessment result, 3) a situation recovery component that provides a basis for decision-making to reduce the risk level of situations to an acceptable level, and 4) a human-computer interface. The SASS is partially evaluated by a sensitivity analysis, which is carried out to validate DBN-based situational networks, and SA measurements are suggested for a full evaluation of the proposed system. The performance of the SASS is demonstrated by a case taken from US Chemical Safety Board reports, and the results demonstrate that the SASS provides a useful graphical, mathematically consistent system for dealing with incomplete and uncertain information to help operators maintain the risk of dynamic situations at an acceptable level.
Please use this identifier to cite or link to this item: