Region-based License Plate Detection

Publisher:
Academic Press Ltd Elsevier Science Ltd
Publication Type:
Journal Article
Citation:
Journal Of Network And Computer Applications, 2007, 30 (4), pp. 1324 - 1333
Issue Date:
2007-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2006014691.pdf1.93 MB
Adobe PDF
Automatic license plate recognition (ALPR) is one of the most important aspects of applying computer techniques towards intelligent transportation systems. In order to recognize a license plate efficiently, however, the location of the license plate, in most cases, must be detected in the first place. Due to this reason, detecting the accurate location of a license plate from a vehicle image is considered to be the most crucial step of an ALPR system, which greatly affects the recognition rate and speed of the whole system. In this paper, a region-based license plate detection method is proposed. In this method, firstly, mean shift is used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate. Unlike other existing license plate detection methods, the proposed method focuses on regions, which demonstrates to be more robust to interference characters and more accurate when compared with other methods.
Please use this identifier to cite or link to this item: