The Simulation of Natural Ventilation of Buildings with Different Location of Windows/Openings

Publisher:
ASME
Publication Type:
Conference Proceeding
Citation:
Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition IMECE2015, 2015, 6B pp. 1 - 14
Issue Date:
2015-01-01
Full metadata record
Files in This Item:
Filename Description Size
ThumbnailIdris-Huynh-Abdullah-IMECE2015-51168.pdfPublished version3.55 MB
Adobe PDF
Ventilation is a process of changing air in an enclosed space. Air should continuously be withdrawn and replaced by fresh air from a clean external source to maintain internal good air quality, which may referred to air quality within and around the building structures. In natural ventilation the air flow is due through cracks in the building envelope or purposely installed openings. Its can save significant amount of fossil fuel based energy by reducing the needs for mechanical ventilation and air conditioning. Numerical predictions of air velocities and the flow patterns inside the building are determined. To achieve optimum efficiency of natural ventilation, the building design should start from the climatic conditions and orography of the construction to ensure the building permeability to the outside airflow to absorb heat from indoors to reduce temperatures. Effective ventilation in a building will affects the occupant health and productivity. In this work, computational simulation is performed on a real-sized box-room with dimensions 5 m × 5 m × 5 m. Single-sided ventilation is considered whereby openings are located only on the same wall. Two opening of the total area 4 m2 are differently arranged, resulting in 16 configurations to be investigated. A logarithmic wind profile upwind of the building is employed. A commercial Computational Fluid Dynamics (CFD) software package CFD-ACE of ESI group is used. A Reynolds Average Navier Stokes (RANS) turbulence model & LES turbulence model are used to predict the air’s flow rate and air flow pattern. The governing equations for large eddy motion were obtained by filtering the Navier-Stokes and continuity equations. The computational domain was constructed had a height of 4H, width of 9H and length of 13H (H=5m), sufficiently large to avoid disturbance of air flow around the building. From the overall results, the lowest and the highest ventilation rates were obtained with windward opening and leeward opening respectively. The location and arrangement of opening affects ventilation and air flow pattern.
Please use this identifier to cite or link to this item: