The effect of pretreatment on the fouling of membranes: application in biologically treated sewage effluent

Elsevier Science Bv
Publication Type:
Journal Article
Journal Of Membrane Science, 2004, 234 (1-2), pp. 111 - 120
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2004000111.pdf976.79 kB
Adobe PDF
Reuse of wastewater can help in maintaining environmental quality and relieving the unrelenting pressure on conventional and natural freshwater sources. Membrane processes find an important place in the wastewater treatment for reuse. Nonetheless, reverse osmosis (RO) and nanofiltration (NF), i.e. non-porous membranes require higher operational costs and energy. Thus, in this research NTR 7410 ultrafiltration (UF) membrane which is porous was used without and with pretreatment to treat biologically treated sewage effluent (BTSE). Four different pretreatment methods, namely, ferric chloride (FeCl3) flocculation, powdered activated carbon (PAC) adsorption, flocculation followed by adsorption, and granular activated carbon (GAC) biofilter were used in this study to compare their relative merits. Experimental results indicate that the most suitable pretreatment was flocculation followed by adsorption leading to a total organic carbon (TOC) removal of 90%. To assess the suitability of the membranes, it is important to conduct a detailed membrane characterization. The fouled NTR 7410 membrane surface was analyzed in terms of contact angle, zeta potential, attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), flux decline, and TOC removal. The contact angle of the fouled membrane surface was lower than that of the clean membrane surface. This suggests that the majority of the foulants may have been the hydrophilic organic compounds such as polysaccharides, urea, etc. which are the extracellular enzyme of microorganisms in BTSE
Please use this identifier to cite or link to this item: