MARS: A multi-aspect Recommender system for Point-of-Interest

Publication Type:
Conference Proceeding
Proceedings - International Conference on Data Engineering, 2015, 2015-May pp. 1436 - 1439
Issue Date:
Full metadata record
© 2015 IEEE. With the pervasive use of GPS-enabled smart phones, location-based services, e.g., Location Based Social Networking (LBSN) have emerged. Point-of-Interests (POIs) Recommendation, as a typical component in LBSN, provides additional values to both customers and merchants in terms of user experience and business turnover. Existing POI recommendation systems mainly adopt Collaborative Filtering (CF), which only exploits user given ratings (i.e., user overall evaluation) about a merchant while regardless of the user preference difference across multiple aspects, which exists commonly in real scenarios. Meanwhile, besides ratings, most LBSNs also provide the review function to allow customers to give their opinions when dealing with merchants, which is often overlooked in these recommender systems. In this demo, we present MARS, a novel POI recommender system based on multi-aspect user preference learning from reviews by using utility theory. We first introduce the organization of our system, and then show how the user preferences across multiple aspects are integrated into our system alongside several case studies of mining user preference and POI recommendations.
Please use this identifier to cite or link to this item: