Grid-based scan-to-map matching for accurate 2D map building

Publication Type:
Journal Article
Advanced Robotics, 2016, 30 (7), pp. 431 - 448
Issue Date:
Full metadata record
© 2016 Taylor & Francis and The Robotics Society of Japan. This paper presents a grid-based scan-to-map matching technique for accurate 2D map building. At every acquisition of a new scan, the proposed technique matches the new scan to the previous scan similarly to the conventional techniques, but further corrects the error by matching the new scan to the globally defined map. In order to achieve best scan-to-map matching at each acquisition, the map is represented as a grid map with multiple normal distributions (NDs) in each cell, which is one contribution of this paper. Additionally, the new scan is also represented by NDs, developing a novel ND-to-ND matching technique. This ND-to-ND matching technique has significant potential in the enhancement of the global matching as well as the computational efficiency. Experimental results first show that the proposed technique accumulates very small errors after consecutive matchings and identifies that the scans are matched better to the map with the multi-ND representation than one ND representation. The proposed technique is then tested in a number of large indoor environments, including public domain datasets and the applicability to real world problems is demonstrated.
Please use this identifier to cite or link to this item: