A comprehensive survey on Pose-Invariant Face Recognition

Publication Type:
Journal Article
Citation:
ACM Transactions on Intelligent Systems and Technology, 2016, 7 (3)
Issue Date:
2016-02-01
Full metadata record
Files in This Item:
© 2016 ACM. The capacity to recognize faces under varied poses is a fundamental human ability that presents a unique challenge for computer vision systems. Compared to frontal face recognition, which has been intensively studied and has gradually matured in the past few decades, Pose-Invariant Face Recognition (PIFR) remains a largely unsolved problem. However, PIFR is crucial to realizing the full potential of face recognition for real-world applications, since face recognition is intrinsically a passive biometric technology for recognizing uncooperative subjects. In this article, we discuss the inherent difficulties in PIFR and present a comprehensive review of established techniques. Existing PIFR methods can be grouped into four categories, that is, pose-robust feature extraction approaches, multiview subspace learning approaches, face synthesis approaches, and hybrid approaches. The motivations, strategies, pros/cons, and performance of representative approaches are described and compared. Moreover, promising directions for future research are discussed.
Please use this identifier to cite or link to this item: