Detecting consistency of overlapping quantum marginals by separability

Publication Type:
Journal Article
Citation:
Physical Review A, 2016, 93 (3)
Issue Date:
2016-03-03
Full metadata record
Files in This Item:
Filename Description Size
1509.06591v2.pdfAccepted Manuscript Version1.56 MB
Adobe PDF
© 2016 American Physical Society. The quantum marginal problem asks whether a set of given density matrices are consistent, i.e., whether they can be the reduced density matrices of a global quantum state. Not many nontrivial analytic necessary (or sufficient) conditions are known for the problem in general. We propose a method to detect consistency of overlapping quantum marginals by considering the separability of some derived states. Our method works well for the k-symmetric extension problem in general and for the general overlapping marginal problems in some cases. Our work is, in some sense, the converse to the well-known k-symmetric extension criterion for separability.
Please use this identifier to cite or link to this item: