A hysteresis model for dynamic behaviour of magnetorheological elastomer base isolator
- Publication Type:
- Journal Article
- Citation:
- Smart Materials and Structures, 2016, 25 (5)
- Issue Date:
- 2016-04-07
Open Access
Copyright Clearance Process
- Recently Added
- In Progress
- Open Access
This item is open access.
© 2016 IOP Publishing Ltd. In recent years, an adaptively tuned magnetorheological elastomer (MRE) isolator for a base isolation system has been designed and tested with the benefits of low power cost, fail safe manner and fast responses. To make full use of this striking device for design of smart structures, a highly precise model should be developed to effectively and accurately forecast the shear force of the device in real-time so as to adopt a proper control strategy to improve the responses of the protected structures. In this work, a novel mechanical model is presented to characterize this nonlinear hysteresis for its implementation in structural vibration control. This model employs the displacement and velocity of the device as well as the applied current as the inputs and just has the limited constant parameters to be identified compared with some classical hysteretic models such as Bouc-Wen, improved Dahl and LuGre models. Performance evaluation of this novel hysteresis model has been conducted based on the testing data from an MRE base isolator. The results show that the proposed model has high modelling accuracy and is able to perfectly portray the unique and complicated behaviours of the device with various excitations.
Please use this identifier to cite or link to this item: