Academic Writing Analytics for Civil Law: Participatory Design Through Academic and Student Engagement

Publisher:
Springer
Publication Type:
Journal Article
Citation:
International Journal of Artificial Intelligence in Education, 2017
Issue Date:
2017
Full metadata record
Files in This Item:
Filename Description Size
A526BE64-B6B5-4D9C-AA2D-0FDDEE8F7520 am.pdfAccepted Manuscript Version1.01 MB
Adobe PDF
Research into the teaching and assessment of student writing shows that many students find academic writing a challenge to learn, with legal writing no exception. Improving the availability and quality of timely formative feedback is an important aim. However, the time-consuming nature of assessing writing makes it impractical for instructors to provide rapid, detailed feedback on hundreds of draft texts which might be improved prior to submission. This paper describes the design of a natural language processing (NLP) tool to provide such support. We report progress in the development of a web application called AWA (Academic Writing Analytics), which has been piloted in a Civil Law degree. We describe: the underlying NLP platform and the participatory design process through which the law academic and analytics team tested and refined an existing rhetorical parser for the discipline; the user interface design and evaluation process; and feedback from students, which was broadly positive, but also identifies important issues to address. We discuss how our approach is positioned in relation to concerns regarding automated essay grading, and ways in which AWA might provide more actionable feedback to students. We conclude by considering how this design process addresses the challenge of making explicit to learners and educators the underlying mode of action in analytic devices such as our rhetorical parser, which we term algorithmic accountability.
Please use this identifier to cite or link to this item: