Informed recommender: Basing recommendations on consumer product reviews

IEEEComputer Soc
Publication Type:
Journal Article
IEEE Intelligent Systems, 2007, 22 (3), pp. 39 - 47
Issue Date:
Full metadata record
Files in This Item:
Filename Description SizeFormat
2006011397.pdf328.73 kBAdobe PDF
Consumer reviews, opinions, and shared experiences in using a product are a powerful source of information that recommender systems can use. Despite the importance and value of such information, no comprehensive mechanism formalizes the opinions' selection, retrieval, and use owing to the difficulty of extracting information from text data. A new recommender system prioritizes consumer product reviews on the basis of the reviewer's level of expertise in using a product. The system uses text mining techniques to map each piece of each review comment into an ontology. Using consumer reviews also helps solve the cold-start problem that plagues traditional approaches. This article is part of a special issue on Recommender Systems
Please use this identifier to cite or link to this item: