Virtual samples construction using image-block-stretching for face recognition

Publication Type:
Conference Proceeding
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016, 9877 LNCS pp. 346 - 354
Issue Date:
Full metadata record
© Springer International Publishing AG 2016. Face recognition encounters the problem that multiple samples of the same object may be very different owing to the deformation of appearances. To synthesizing reasonable virtual samples is a good way to solve it. In this paper, we introduce the idea of image-block-stretching to generate virtual images for deformable faces. It allows the neighbored image blocks to be stretching randomly to reflect possible variations of the appearance of faces. We demonstrate that virtual images obtained using image-block-stretching and original images are complementary in representing faces. Extensive classification experiments on face databases show that the proposed virtual image scheme is very competent and can be combined with a number of classifiers, such as the sparse representation classification, to achieve surprising accuracy improvement.
Please use this identifier to cite or link to this item: