On minimal models of the Region Connection Calculus

Publication Type:
Journal Article
Fundamenta Informaticae, 2006, 69 (4), pp. 427 - 446
Issue Date:
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2008004812OK.pdf228 kB
Adobe PDF
Region Connection Calculus (RCC) is one primary formalism of qualitative spatial reasoning. Standard RCC models are continuous ones where each region is infinitely divisible. This contrasts sharply with the predominant use of finite, discrete models in applications. In a recent paper, Li et al. (2004) initiate a study of countable models that can be constructed step by step from finite models. Of course, some basic problems are left unsolved, for example, how many non-isomorphic countable RCC models are there? This paper investigates these problems and obtains the following results: (i) the exotic RCC model described by Gotts (1996) is isomorphic to the minimal model given by Li and Ying (2004); (ii) there are continuum many non-isomorphic minimal RCC models, where a model is minimal if it can be isomorphically embedded in each RCC model.
Please use this identifier to cite or link to this item: