Development of a Magnetic Planetary Gearbox

Publisher:
IEEE
Publication Type:
Journal Article
Citation:
IEEE Transactions On Magnetics, 2008, 44 (3), pp. 403 - 412
Issue Date:
2008-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2008006319OK.pdf3.16 MB
Adobe PDF
In this paper, we describe a new design for a magnetic planetary gearbox.We discuss the theory of operation and a simulated design. We constructed and verified the simulation by measuring the transmitted torque and cogging torque. A magnetic planetary gearbox operates like a mechanical planetary gearbox, except that it is contact-free and needs no gear lubrication. Hence, it has the same characteristics of three transmission modes, a high-speed-reduction ratio, and high durability. The starting point for the design procedure is to avoid possible sliding (i.e., pole-slipping), and we propose three steps to obtain the maximum number of magnetic planet gears. We show that using more planetary gears is a way to increase the transmission torque. Cogging torque can be high in this design. We assessed this potential by using finite-element analysis and then measuring performance of the fabricated gearbox. While the simulation overestimates the cogging torque (for various reasons), we propose a method to reduce the cogging torque to a very low value.We present a literature review to illustrate the development of magnetic gearing and highlight the innovation of this design.
Please use this identifier to cite or link to this item: