Robust tracking control of vehicle lateral dynamics

Publication Type:
Journal Article
Citation:
International Journal of Vehicle Design, 2014, 65 (4), pp. 314 - 335
Issue Date:
2014-01-01
Full metadata record
Files in This Item:
Filename Description Size
Thumbnail2009003148.pdf181.72 kB
Adobe PDF
In this paper, a robust yaw moment controller is designed to improve vehicle handling and stability. Three issues regarding to vehicle mass variation cornering stiffness uncertainty, and tracking control are considered in the controller design process. To deal with these issues, parameter-dependent control strategy, norm-bounded uncertainty description, and tracking error feedback are applied. The control objective is to stabilise the closed-loop system and to optimise the tracking performance on yaw rate and sideslip angle with respect to their targets. The condition for designing such a controller is derived in terms of linear matrix inequality (LMI). Numerical simulations on a nonlinear vehicle model are performed to validate the effectiveness of the proposed approach. The results show that the designed controller can improve vehicle handling and stability regardless of the variation of vehicle mass and the change of road surface. Copyright © 2014 Inderscience Enterprises Ltd.
Please use this identifier to cite or link to this item: