A Local Scale Selection Scheme for Multiscale Area Integral Invariants

Publication Type:
Conference Proceeding
2016 International Conference on Digital Image Computing: Techniques and Applications, DICTA 2016, 2016
Issue Date:
Filename Description Size
07796989.pdfPublished version258.79 kB
Adobe PDF
Full metadata record
© 2016 IEEE. Area integral invariant (AII) is a functional obtained by performing integral operations on the closed planar contour of a shape via the convolution with disc kernels. This shape descriptor is insensitive to noise and robust with respect to occlusions. AII intrinsically introduces the notion of scale using the size of kernel radius. However how to select an optimal scale remains unresolved. In this paper, we propose a local scale selection scheme for generating multiscale area integral invariants. For the same scale level, the disc kernel size is not fixed and varies with the contour point where the disc is centered. This scheme also provides a scale assignment for emphasising the features extraction at finer scales. The strong discriminative power of the multiscale area integral invariant derived from the proposed scale selection scheme has been validated through experiments on very challenging leaf image retrievals.
Please use this identifier to cite or link to this item: