A fuzzy virtual machine workload prediction method for cloud environments

Publication Type:
Conference Proceeding
Citation:
IEEE International Conference on Fuzzy Systems, 2017
Issue Date:
2017-08-23
Metrics:
Full metadata record
Files in This Item:
Filename Description Size
OCC-97073_AM.pdfAccepted Manuscript version867.08 kB
Adobe PDF
© 2017 IEEE. Due to the dynamic nature of cloud environments, the workload of virtual machines (VMs) fluctuates leading to imbalanced loads and utilization of virtual and physical cloud resources. It is, therefore, essential that cloud providers accurately forecast VM performance and resource utilization so they can appropriately manage their assets to deliver better quality cloud services on demand. Current workload and resource prediction methods forecast the workload or CPU utilization pattern of the given web-based applications based on their historical data. This gives cloud providers an indication of the required number of resources (VMs or CPUs) for these applications to optimize resource allocation for software as a service (SaaS) or platform as a service (PaaS), reducing their service costs. However, historical data cannot be used as the only data source for VM workload predictions as it may not be available in every situation. Nor can historical data provide information about sudden and unexpected peaks in user demand. To solve these issues, we have developed a fuzzy workload prediction method that monitors both historical and current VM CPU utilization and workload to predict VMs that are likely to be performing poorly. This model can also predict the utilization of physical machine (PM) resources for virtual resource discovery.
Please use this identifier to cite or link to this item: