Dynamic Reconstruction of Deformable Soft-Tissue with Stereo Scope in Minimal Invasive Surgery

Publication Type:
Journal Article
IEEE Robotics and Automation Letters, 2018, 3 (1), pp. 155 - 162
Issue Date:
Filename Description Size
08000678.pdfPublished Version642.66 kB
Adobe PDF
Full metadata record
© 2016 IEEE. In minimal invasive surgery, it is important to rebuild and visualize the latest deformed shape of soft-tissue surfaces to mitigate tissue damages. This letter proposes an innovative Simultaneous localization and mapping (SLAM) algorithm for deformable dense reconstruction of surfaces using a sequence of images from a stereoscope. We introduce a warping field based on the embedded deformation nodes with three-dimensional (3-D) shapes recovered from consecutive pairs of stereo images. The warping field is estimated by deforming the last updated model to the current live model. Our SLAM system can incrementally build a live model by progressively fusing new observations with vivid accurate texture; estimate the deformed shape of unobserved region with the principle as-rigid-as-possible; show the consecutive shape of models; and estimate the current relative pose between the soft-tissue and the scope. In-vivo experiments with publicly available datasets demonstrate that the 3-D models can be incrementally built for different soft-tissues with different deformations from sequences of stereo images obtained by laparoscopes. Results show the potential clinical application of our SLAM system for providing surgeon useful shape and texture information in minimal invasive surgery.
Please use this identifier to cite or link to this item: