Impact of Low and High Congestion Traffic Patterns on a Mild-HEV Performance

Publication Type:
Journal Article
Citation:
SAE Technical Papers, 2017, 2017-October
Issue Date:
2017-01-01
Full metadata record
Copyright © 2017 SAE International. Driven by stricter mandatory regulations on fuel economy improvement and emissions reduction, market penetration of electrified vehicles will increase in the next ten years. Within this growth, mild hybrid vehicles will become a leading sector. The high cost of hybrid electric vehicles (HEV) has somewhat limited their widespread adoption, especially in developing countries. Conversely, it is these countries that would benefit most from the environmental benefits of HEV technology. Compared to a full hybrid, plug-in hybrid, or electric vehicle, a mild hybrid system stands out due to its maximum benefit/cost ratio. As part of our ongoing project to develop a mild hybrid system for developing markets, we have previously investigated improvements in drive performance and efficiency using optimal gearshift strategies, as well as the incorporation of high power density supercapacitors. In this paper, the fuel and emissions of a baseline conventional vehicle and mild hybrid electric vehicle (MHEV) are compared. The objective of this analysis is to compare the fuel economy and Greenhouse Gas (GHG) emissions of the baseline and MHEV models, using low and high-density traffic patterns chosen for their similarity to traffic density profiles of our target markets. Results demonstrate the benefits of a lower ongoing cost for the HEV architecture. These advantages include torque-hole filling between gear changes, increased fuel efficiency and performance.
Please use this identifier to cite or link to this item: